Calculus

Asymptotes

Problem 1.- Find the asymptotes of
$f(x)=\frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}$
Solution: To find the horizontal asymptotes we examine the limits at $+\infty$ and $-\infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}} \times \frac{1 / x^{2}}{1 / x^{2}} \\
& \lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}+\frac{2}{x^{2}}}{\sqrt{16-\frac{81}{x^{4}}}}=\frac{3+0+0}{\sqrt{16-0}}=\frac{3}{4} \\
& \lim _{x \rightarrow-\infty} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}=\lim _{x \rightarrow-\infty} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}} \times \frac{1 / x^{2}}{1 / x^{2}} \\
& \lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}+\frac{2}{x^{2}}}{\sqrt{16-\frac{81}{x^{4}}}}=\frac{3+0+0}{\sqrt{16-0}}=\frac{3}{4}
\end{aligned}
$$

Notice that in this case, $\frac{1}{x^{2}}=\frac{1}{\sqrt{x^{4}}}$, there is no change in sign because x^{2} is positive.
The asymptotes are the same straight line $y=3 / 4$ for both limits $+\infty$ and $-\infty$
Now, the vertical asymptotes: They exist when there are "poles", places where the denominator is zero.

$$
\sqrt{16 x^{4}-81}=0 \rightarrow\left(4 x^{2}+9\right)\left(4 x^{2}-9\right)=0 \rightarrow\left(4 x^{2}+9\right)(2 x-3)(2 x+3)=0
$$

There are two possibilities: $x=3 / 2$ and $x=-3 / 2$
Let's examine $x=-3 / 2$
$\lim _{x \rightarrow-\frac{3^{-}}{2}} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}=\lim _{x \rightarrow-\frac{3^{-}}{2}} \frac{\frac{5}{4}}{\sqrt{16 x^{4}-81}}=+\infty$
$\lim _{x \rightarrow-\frac{3^{+}}{2}} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}$ does not exist because $16 x^{4}-81$ is negative on that side.
So, the asymptote is $x=-3 / 2$ and the function approaches $+\infty$ on the left side.
Now, let's examine $x=3 / 2$
$\lim _{x \rightarrow \frac{3^{2}}{2}} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}=\lim _{x \rightarrow \frac{3^{+}}{2}} \frac{\frac{65}{4}}{\sqrt{16 x^{4}-81}}=+\infty$
$\lim _{x \rightarrow \frac{3^{-}}{2}} \frac{3 x^{2}+5 x+2}{\sqrt{16 x^{4}-81}}$ does not exist because $16 x^{4}-81$ is negative on that side.
So, the asymptote is $x=3 / 2$ and the function approaches $+\infty$ on the right side.

Problem 2.- Find a function that has a vertical asymptote at $x=-1$, a horizontal asymptote at $y=2$, a hole for $x=2$ and an x intercept of 4 .

Solution: We will try to build the function step by step. To have a vertical asymptote $x=-1$ we need a factor $x+1$ in the denominator, for example

$$
f(x)=\frac{c}{x+1}
$$

Where c is any constant (but not zero).
Next, we want a horizontal asymptote at $y=2$. We notice that the function that we created already has limits 0 at $+\infty$ and $-\infty$, so we could just add 2 to the function to have the $y=2$ asymptote.
$f(x)=2+\frac{c}{x+1}$
Next, the function should have a hole at $x=2$, we can do that by using the factor $\frac{x-2}{x-2}$, which is 1 everywhere except that it has a hole at $x=2$.

$$
f(x)=\left(2+\frac{c}{x+1}\right)\left(\frac{x-2}{x-2}\right)
$$

Finally, we want an x intercept of 4 , which means that the function should pass through $(4,0)$.
That means
$f(4)=0 \rightarrow\left(2+\frac{c}{4+1}\right)\left(\frac{4-2}{4-2}\right)=0 \rightarrow c=-10$
So the function we found is
$f(x)=\left(2-\frac{5}{x+1}\right)\left(\frac{x-2}{x-2}\right)$

$$
f(x)=\frac{2 x^{2}-7 x+6}{x^{2}-x-2}
$$

